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Abstract
In the past the coupling model (CM) was focused on the dynamics at long times,
when all relaxing units of an interacting system participate in the terminal,
cooperative Kohlrausch relaxation. No attention was paid to the dynamics
at short times when all the relaxing units are caged, nor to intermediate
times when an increasing number of them are no longer caged. We now
extend the CM to also address the dynamics in these earlier time regimes.
The crux of the extended CM is the quantitatively determinable independent
relaxation time, from which the characteristics of the dynamics in the short-
time and intermediate-time regimes can be deduced. This description of the
evolution of the dynamics by the extended CM is supported by broadband
dielectric relaxation spectra of two archetypal systems, the glassy/molten ionic
conductors and supercooled liquids. In supercooled liquids, the ‘universal’
Johari–Goldstein β-relaxation provides evidence for the physical reality of the
independent relaxation of the extended CM.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The dynamics of several classes of cooperatively relaxing systems are active areas of research.
These include the molecular dynamics of glass-forming supercooled liquids of all kinds [1–
14], the ion dynamics in glassy or molten ionic conductors [15–25] and the colloidal particle
suspensions [26, 27]. Not only are the dynamics of a material in any class of interest in their
own right, but also of broader interest is the existence of common features in the dynamics of
different classes [28]. The latter suggests that some fundamental physics governs the dynamics
of all cooperatively relaxing systems, and any theoretical description should be general enough
to be applicable to all classes. Due to recent developments in experimental capabilities, the
dynamics can now be measured over much wider time/frequency ranges. It is advantageous to
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have a theoretical description of the dynamics that covers continuously from short times, when
the relaxing units are caged and only local motions are possible, to long times, when they are
engaged in cooperative motion, eventually giving rise to flow, diffusion or conductivity. The
validity of the description should not be confined to any specific time or temperature range. In
the course of time, several general and often anomalous properties of the long-time cooperative
dynamics have been found,requiring a theoretical explanation. Fulfilling all these requirements
would need a Herculean theoretical effort, not achieved so far. Most efforts are confined to
addressing only some properties in certain dynamic regimes. For example, the idealized mode
coupling theory is mainly confined to describing the caged dynamics of colloidal particles
and glass-forming liquids at temperatures above a critical temperature, Tc, high above the
glass transition temperature, Tg [29]. Based on density considerations, it does not apply to
the dynamics of ions in glassy ionic conductors or molten ionic conductors at temperatures
where the ion dynamics are decoupled from the structural relaxation. The coupling model
(CM) of the present author [30–34], in previous publications, was restricted to addressing the
long-time cooperative dynamics and the transport coefficients. It has general applicability
to all cooperatively relaxing systems and is successful in rationalizing or explaining their
general and often anomalous properties [28, 34]. Nevertheless, no effort was made to describe
the short-time dynamics that precede the cooperative dynamics, a deficiency which invited
legitimate criticisms [35, 36]. The objective of the present work is to fill this void of the
CM, by offering a description of the short-time dynamics, and to arrive at an extended CM
appropriate for all times. Experimental spectra of materials in several classes of cooperatively
relaxing systems are used to identify the general features of the short-time dynamics, and to
assess the extended CM.

2. The coupling model extended

We shall first clarify that the CM in most previous applications was confined to the consideration
of only the long-time cooperative dynamics based on the scenario that all relaxing units are no
longer caged. The key concept therein is the independent relaxation, which is slowed down by
the mutual interactions between the relaxing units starting at a temperature independent time,
tc, with its magnitude determined by the strength of the interaction [30–34]. The independent
relaxation time, τ0, can be calculated from the experimentally observed cooperative relaxation
time, τ . After that we extend the CM to address the dynamics at shorter times. The independent
relaxation time, τ0, now plays a pivotal role in delineating the short-time, the intermediate-
time and the long-time regimes. From the physical meaning of τ0, we deduce the nature of the
dynamics in the short-time and intermediate-time regimes. Experimental relaxation spectra
will be shown in section 3 to support the description of the evolution of the dynamics by the
extended CM.

2.1. Coupling model for the fully cooperative relaxation at long times

The relevance of the CM to the dynamics of supercooled liquids is supported by

(1) the results of a specific example of the former to mimic several key experimentally observed
properties of the latter [33] and

(2) the ability of its predictions to explain [34] the salient dynamic properties [14].

There is also a long history of application of the CM to explain key features of the ion
dynamics in glassy, molten and crystalline ionic conductors [20, 24, 25, 28]. These examples,
and in fact most previous applications of the CM, were focused on explaining the cooperative
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motion of large amplitudes (of rotational angle or translational distance) at long times. For
supercooled liquids, the latter is the structural α-relaxation or probe molecule relaxation. For
ionic conductors, it is the cooperative ion hopping relaxation leading to dc conductivity. In
these previous works, no consideration was given to the dynamics in the earlier-time regime
when most of the relaxing units are caged. Naturally such caged dynamics involve motions with
smaller amplitudes and no cooperativity, which will be further discussed in the next subsection.
Thus, the only consideration given in previous works is that all relaxing units are no longer
caged and ready to move independently to larger angles or distances, but such simultaneous
independent relaxations are impossible because of the intermolecular (inter-ionic) interactions
and constraints. Cooperativity is necessary for some successful motions of large amplitudes.
Since all units are involved, we call this full cooperativity to distinguish it from a different
scenario to be discussed in the next subsection. The independent relaxations of some units
will not be successful in cooperative motions and the result is a slowed-down and dynamically
heterogeneous relaxation process. The onset time of slowing down the independent relaxation,
tc, is of the order of 1 to 2 ps [31] for supercooled liquids and ionic conductors. The
magnitude of tc and its temperature independence reflects that the slowing down is caused
by interaction. Rigorous solutions of simple models of an interacting system [32, 33] indicate
that the independent relaxation,exp(−t/τ0), is slowed after tc to a Kohlrausch–Williams–Watts
(KWW) stretched exponential function [37, 38],

φ(t) = exp[−(t/τK )1−n]. (1)

The coupling parameter, n, a positive fraction of unity, is a measure of the degree of slowing
down. Operationally justified by the rather sharp crossover of the former to the latter as seen
in model calculations [32, 33], a continuity between exp(−t/τ0) and the cooperative KWW
relaxation function, equation (1), leads to the relation

τK = [t−n
c τ0]1/(1−n), (2)

between the observed cooperative relaxation time, τK , and the independent relaxation time,
τ0. This relation together with the physical interpretation of n spawned many applications
of the CM to several interacting systems with the benefit of explaining various phenomena
and anomalous properties [25, 28, 34, 39, 40]. These long-time problems had been addressed
successfully, notwithstanding the neglect of the caged dynamics at shorter time. In the next
subsection, we extend the CM to include the contribution from caged dynamics.

2.2. Coupling model extended to include the short-time caged dynamics

Whether the long-time cooperative relaxation is the structural α-relaxation in supercooled
liquids or the ion hopping relaxation in ionic conductors, it is the most prominent feature in the
dielectric relaxation spectrum. From the fit of the KWW function or its Fourier transform to
isothermal experimental data, the parameters, τK and n, are determined. With these parameters
known, along with tc ≈ 2 ps [31], the independent relaxation time, τ0, from equation (2) is
given by

τ0 = tn
c τ 1−n

K . (3)

Except at extremely high temperatures, initially at sufficient short times, all relaxing
units are caged and vibrations are the only movements. However, the cages are not permanent
because at any time there is non-zero probability for a unit to execute an independent relaxation.
The probability is small in the early-time regime, t � τ0, because there is hardly any decay in
the correlation function, exp(−t/τ0). Since the independent relaxations are rare and involve
motions with small amplitudes, there is no cooperativity involved. The number of independent
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relaxations increases with time throughout this early-time regime albeit very slowly, causing
very slow decay of the cages or very slow increase of the mean square (angular or translational)
displacement. In the frequency domain this corresponds to a loss which increases very slowly
with decreasing frequency in the high-frequency regime defined by ν � ν0 ≡ 1/(2πτ0). The
increase is so slow that it appears in the frequency spectrum as a nearly constant loss (NCL),
extending over an extended range of frequencies. It is convenient to approximately describe
the NCL by a power law, ν−α , where α is a small positive number as often done in the literature
of ionic conductors [15, 16, 22, 23]. It is important to remark here that a strict power law, ν−α ,
is by no means necessary, but is only a convenient means to describe the slow increase of the
loss.

As time continues to approach τ0, there are an increasing number of independent
relaxations due to a more significant decrease of exp(−t/τ0). Consequently there is a more
rapid increase of the loss with decreasing frequency. NCL as defined by an approximate
ν−α-dependence for a chosen small positive α ceases to be observed below some frequency,
νx1 ≡ 1/(2π tx1), and we expect that tx1 � τ0 or νx1 � ν0.

At times comparable to τ0, many units are independently relaxing and now some degree
of cooperativity is required for motions to be possible. The degree of cooperativity continues
to increase with time as more and more units participate in the motion. At some time,
tx2 ≡ 1/(2πνx2), after which the cages vanish, all units participate in the cooperative
relaxation, and we have entered into the fully cooperative relaxation regime described by
the original CM (previous subsection). It is clear that tx2 � τ0 or νx2 � ν0. These together
with tx1 � τ0 or νx1 � ν0 demonstrate a pivotal role played by τ0 (ν0) in delineating three time
(frequency) regimes of the dynamics. The early-time (higher-frequency) regime, t < tx1 (or
ν > νx1), exhibits the NCL. In the intermediate-time (frequency) regime, tx1 < t < tx2

(or νx1 > ν > νx2), the probability of independent relaxations becomes significant and
increases with time. Concomitantly, cooperativity is developing continuously with time in
this intermediate-time regime. In the long-time (low-frequency) regime, t > tx2 (or ν < νx2),
full cooperativity has been developed and the time dependence is described by the KWW
function (equation (1)). Naturally tx2 < τ (or νx2 > νK ≡ 1/2πτ ). The characteristic times
and frequencies introduced are related by

tx1 � τ0 � tx2 � τK (4)

and

νx1 � ν0 � νx2 � νK . (5)

From equation (2) it can be shown that

(log ν0 − log νK ) = n[log νc − log νK ], (6)

where νc ≡ 1/2π tc. Hence from equation (6), for the same νK , the separation between ν0 and
νK is smaller for a material having a smaller n. For the same material, the separation between
ν0 and νK becomes smaller at higher temperature, principally because of the increase of νK

and also the possible decrease of n [33]. Thus, the width of the intermediate-time regime
decreases with increasing temperature.

The above description of the spectrum could have been given qualitatively by any model
which embodies the concept of a faster independent relaxation, as does the CM. However, what
distinguishes the CM is that it offers a practical way to calculate the independent relaxation
time or frequency, thus giving a quantitative underpinning, which can be evaluated against
experimental data. Examples of such comparisons with experiment are given in the following
sections for two classes of cooperatively relaxing systems, ionic conductors and supercooled
liquids.
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3. Dynamics of ions in glassy and molten ionic conductors

At sufficiently low frequencies, cooperative ion hopping makes the dominant contribution to
the measurements given by the complex permittivity, ε∗(ν) = ε′(ν) − iε′′(ν), or equivalently
the complex conductivity, σ ∗(ν) = σ ′(ν) + iσ ′′(ν) = i2πνε∗ (ω). Ion conductivity
relaxation differs from dipole relaxation in supercooled liquids. Instead of measuring decay
of polarization of dipoles in the latter, in the time domain, the measured electrical behaviour of
the former can be described in terms of relaxation of the electric field, E(t) = E(0)φ(t), under
the constraint of a constant displacement vector, D [41]. In the frequency domain, relaxation
of polarization of permanent dipoles in non-conducting supercooled liquids is described by
the dielectric permittivity, ε∗(ν), which is the electrical analogue of the complex mechanical
compliance, J ∗(ν), describing the response of the strain at constant stress. Electric field
relaxation at constant D is then the electrical analogue of the complex mechanical modulus,
G∗(ν), describing the response of the stress at constant strain. Hence for ionic motion, the most
appropriate representation is not ε∗(ν) but the so-called complex electric modulus M∗(ν) [41]:

M∗(ν) = M ′ + iM ′′ = M∞
[

1 −
∫ ∞

0
dt exp(−i2πνt)(−dφ/dt)

]
. (7)

M∗(ν) is related to ε∗(ν) by ε∗(ν) = 1/M∗(ν), in analogy to J ∗(ν) = 1/G∗(ν). Let us
consider first the part of the electric field decay and the corresponding part of the electric
modulus, M∗

n (ν), caused by the fully cooperative movement of the ions. According to the
original CM, M∗

n (ω) is obtained from equation (7) with φ(t) therein given by the Kohlrausch
function (equation (1)). The corresponding dielectric loss, ε∗

n(ν) ≡ 1/M∗
n (ν), and the

conductivity, σ ∗
n (ν) ≡ i2πν/M∗

n (ν), can also be obtained.
In the following sections we show that the interpretation of the evolution of ion dynamics

by the extended CM is in accord with experimental data. There are many such examples, but
only a few can be given in this work due to space limitation.

3.1. Ion dynamics of 0.4Ca(N O3)2–0.6K N O3 (C K N) above Tg

Shown in the inset of figure 1 are the M ′′(ν) ≡ Im M∗(ν) data of 0.4Ca(NO3)2–0.6KNO3

(CKN) at 342 K from [17, 18]. The glass transition temperature Tg is 333 K for CKN. The
dashed line is the fit by M ′′

n (ν) ≡ Im M∗
n (ν) with n = 0.34. The main figure shows the

data as ε′′(ν) and the dashed line is Im ε∗
n(ν). The data ε′′(ν) deviate from Im ε∗

n(ν) at higher
frequencies and we determine νx2 as the frequency above which the deviations are more than
10%. Similarly, we determine νx1 as the frequency below which the data are more than 10%
larger than the ν−α-dependence chosen to represent the NCL. When data are not sufficient
as in the present case, the νx1 shown in figure 1 is somewhat arbitrary. Either from ε′′(ν) or
M ′′(ν), we can discern three spectral regimes discussed in the previous section:

(i) an NCL regime with α ≈ 0 for ν > νx1,
(ii) an intermediate crossover regime defined by νx1 > ν > νx2 and

(iii) the fully cooperative hopping regime for ν < νx2.

The location of the independent relaxation frequency,ν0, calculated by equation (6) is indicated
in the figure. The value of νc used in the calculation is 1011 Hz (or tc ≈ 2 ps), previously
deduced from high-frequency/high-temperature measurements [31]. Note that a factor of two
uncertainty in determining tc or νc introduces via equation (6) uncertainty of only 2n in ν0,
which is negligible for the present purpose. The most important point to make is that ν0 lies
well inside the intermediate-time regime and satisfies the inequality (5), which is necessary in
order to justify the previously given interpretation of the spectrum by the extended CM.
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Figure 1. Dielectric loss ε′′ as a function of frequency of CKN at 342.5 K showing the existence of
the NCL over three decades in frequency. The dashed line is Im ε∗

n(ν) from the fully cooperative
ion conductivity relaxation calculated from the Kohlrausch fit M ′′

n (ν) ≡ Im M∗
n (ν) to the electric

loss modulus, M ′′ , data shown in the inset as the dashed line with n = 0.34. The deviation of
the data from the Kohlrausch fit at higher frequencies is marked by one crossover frequency, νx2.
The deviation of the data from the NCL at lower frequencies is marked by the other crossover
frequency, νx1. The locations of νK and the calculated independent relaxation frequency, ν0, are
also indicated. Data after [17] and [18].

Isothermal data similar to those shown for 342 K were produced by Lunkenheimer et al
[17, 18] at 325.0, 350.3, 356.4, 361.0, 365.4, 370.0, 385.0, 393.0, 417.0, 440.0 and 468.0 K.
Fits to these data in the electric modulus representation by M∗

n (ν) had previously been done by
Lunkenheimer [18] and from his work the parameters n andνK are obtained for all temperatures.
From these parameters ν0 are calculated. Analyses of these data at other temperatures similar
to that shown for 342 K give the parameters νx1 and νx2, which define the frequency regimes for
each temperature. In figure 2, νx1, ν0, νx2 and νK are plotted as functions of temperature. At all
temperatures where all these four frequencies can be determined, inequality (5) is satisfied. The
width of the transition zone is observed to decrease with increasing temperature, in agreement
with the extended CM as discussed before, immediately following equation (6).

3.2. Ion dynamics in glassy 0.80Li F–0.20Al(P O3)3

Electrical relaxation data of a glassy Li ion conductor, 0.80LiF–0.20Al(PO3)3, were obtained
by Kulkarni et al [19] for many temperatures. In figure 3, we show their data in terms of
M ′′(ν). An example of the Kohlrausch fit, M ′′

n (ν) with n = 0.44, is shown as the lone solid
curve. The data represented as ε′′(ν) are shown in figure 4 together with ε′′

n(ν) calculated
from the M ′′

n (ν) fits for two temperatures, 294.5 and 263.9 K (solid curves). The value of n
does not depend on temperature in this glass. The experimental frequency range is not wide
enough for the data at any temperature to show all three spectral regimes. Nevertheless, at
low temperatures the NCL regime does appears in the experimental window (suggested by the
line at the bottom with slope equal to −0.05), and at higher temperatures the fully cooperative
regime appears as evidenced by M ′′

n (ω) or ε′′
n(ν) fitting the data well. In figure 4, the arrows
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Figure 2. Solid squares are the Kohlrausch conductivity relaxation frequency νK obtained from
the fits to the data of CKN [17, 18] at various temperatures in the electric modulus representation.
Open triangles are ν0 calculated from the fits. The open and closed diamonds are the crossover
frequencies, νx1 and νx2.

Figure 3. log10 M ′′(ν) versus log10 ν plot of data of 0.80LiF–0.20Al(PO3)3 obtained by Kulkarni
et al [19]. From right to left, the data were taken at 335.2, 314.9, 294.5, 274.1, 263.9, 253.7, 243.5,
231.1, 212.9, 202.8, 192.4 and 182.5 K. The solid curve is the KWW fit M ′′

n (ν) ≡ Im M∗
n (ν) with

n = 0.44 to the data at 294.5 K (�). The two dashed curves are used to guide the eyes. The solid
straight line with slope −0.05 indicates the NCL.

pointing at the data at 263.9 K (filled circles) and the data at 294.5 K (open triangles) give
the locations of νK and ν0. Here ν0 is calculated from equation (6) using n = 0.44 ± 0.02,
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Figure 4. log10 ε′′(ν) versus log10 ν plot of data of 0.80LiF–0.20Al(PO3)3 obtained by Kulkarni
et al [19]. From top to bottom the data were taken at 294.5, 284.4, 274.1, 263.9, 253.7, 243.5,
233.3, 223.1, 212.9, 202.8, 192.4, 182.5 and 172.4 K. The solid curves are Im ε∗

n(ν) calculated for
294.5 (�) and 263.9 (•) from the KWW fits M ′′

n (ν) ≡ Im M∗
n (ν) to the electric modulus. The

vertical arrows indicate νK and ν0 for these two temperatures. The straight line with slope −0.05
indicates the NCL. The inset shows data of ε′′(ν) at 294.5 K at higher frequencies to show that the
NCL is responsible for the minimum.

and νc = 1011 Hz. In the glassy state, νK has Arrhenius temperature dependence [19].
By extrapolating the known Arrhenius temperature dependence down to 172.4 K, the lowest
temperature of the data shown in figure 4, we determine νK and then calculate ν0 again using
n = 0.44, and νc = 1011 Hz. The arrow pointing towards the data (filled triangles) indicates
the location of ν0. The calculated ν0 is significantly smaller than the frequencies where the
NCL, operationally defined here by the ν−0.05-dependence, still holds. Thus, the condition,
νx1 � ν0, for the lower bound of the NCL regime is again satisfied. In the inset the complete
spectrum at 294.5 K is displayed. Now the extent of the NCL regime is compressed and is
responsible for the minimum of ε′′(ν). We can deduce by inspection of the inset that again
the condition νx1 � ν0 holds. Such broadband dielectric measurement unfortunately has not
been carried out at lower temperatures. Otherwise one could possibly see a more extended
NCL regime in ε′′(ν) at lower temperatures instead of a minimum at 294.5 K.

3.3. Ion dynamics in x K2 O–(1 − x)GeO2 glasses with x = 0.02

When ion concentration is low, interaction between ions is weak and the degree of cooperativity
in the ion dynamics is small. Shown in figure 5 is such an example from xK2O–(1 − x)GeO2

glasses with x = 0.02. The ε′′(ν) data at 143.4 ◦C are taken from Jain and Krishnaswami [21].
These authors have already characterized the cooperative ion hopping by the Kohlrausch fit
to the electric modulus data with β ≡ (1 − n) = 0.89. The solid curve is the loss calculated
from such a fit. The positions of νK from the fit and ν0 calculated from equation (6) are
indicated. The appearance of the NCL regime is clear. The two operationally determined
crossover frequencies, νx1 and νx2, are indicated in the figure. Again, ν0 lies in between νx1

and νx2, and inequality (5) is well satisfied. One may notice from figure 5 that the width of the
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Figure 5. log10 ε′′(ν) versus log10 ν plot of data of xK2O–(1 − x)GeO2 glasses with x = 0.20
taken by Jain and Krishnaswami [21]. Here n is equal to 0.11 from a fit to the electric modulus
(not shown) by Jain and Krishnaswami. The solid curve is Im ε∗

n(ν) calculated from the KWW fits
to the electric modulus. The NCL regime appears at higher frequencies. The locations of νK and
the calculated ν0, as well as the crossover frequencies, νx1 and νx2, are indicated by the vertical
arrows.

intermediate regime of this glass is much narrower than that of 0.80LiF–0.20Al(PO3)3 for a
similar value of νK , in accordance with the extended CM as discussed immediately following
equation (6).

4. Dynamics of supercooled molecular liquids

Long ago Johari and Goldstein (JG) showed the common occurrence of secondary or β-
relaxation of intermolecular origin in supercooled liquids and glasses even for rigid molecules,
which have no internal degrees of freedom [42–44]. Continued investigations by many other
investigators have confirmed this view. Apparently the JG relaxation or process is a universal
feature and an important aspect of the dynamics of supercooled glass-forming liquids. Various
properties of the JG relaxation [12, 13] indicate that the process involves no cooperativity.
Motivated by the fact that both the JG relaxations and the independent relaxation of the CM
are non-cooperative processes in the same liquid, we have surmised that they may be closely
related processes. In particular, it was proposed [13] that τ0 ≈ τβ , or the corresponding
frequencies, ν0 = 1/(2πτ0) and νβ = 1/(2πτβ), are about the same, i.e.,

ν0 ≈ νβ. (8)

In recent developments [13, 39, 45–47], by examining a large number of glass-formers, a
close relation between the independent relaxation time of the CM, τ0, and the most probable
JG relaxation time, τβ , has been established. This relation has been verified for many glass-
formers at one temperature [13], namely Tg. Furthermore, equation (8) together with (6)
(where νK therein is rewritten here as να) implies that the distance between the α-peak and the
JG β-peak, log νβ − log να , is approximately given by

(log νβ − log να) ≈ (log ν0 − log να) = n[log νc − log να]. (9)
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It is a decreasing function of the coupling parameter, n, in the KWW function, characterizing
the deviation of the α-relaxation peak from the narrowest possible shape given by Debye. This
is a remarkable prediction because it is made on the location of the JG relaxation but based on
the coupling (nonexponentiality)parameter of the α-relaxation. For any fixed value of log να , a
glass-former with smaller n has the JG relaxation located at log νβ that is closer to log να of the
α-relaxation peak, making the JG relaxation more difficult to be resolved. When n falls below
some certain value, the JG relaxation can no longer be resolved within the spectral range of
most experimental set-ups. In fact, experimentally most if not all glass-formers having smaller
n values do not show a resolved JG relaxation [13] except by a special technique [3, 9]. The
prediction given by equations (8) and (9) can be tested quantitatively by experimental data of
glass-formers having resolved JG relaxation. So far the relation has been tested and verified
in a large number of glass-formers but only at one temperature [13, 39, 45, 46], namely Tg ,
of each glass-former, except in a few cases [9, 47, 48]. This restriction is understandable
because most dielectric relaxation measurements in the past have been limited to the more
convenient frequency range of 1 < ν < 106 Hz. In this limited frequency range of at most
six decades, it is not possible to see the resolved JG relaxation of glass-formers with larger n
values at temperatures above Tg . For example, if να(Tg) is equal to 10−3 Hz, and n takes the
medium value of 0.55, from equation (9) and νc ≈ 1011 Hz (equivalent to tc ≈ 2 ps) we have
νβ(Tg) = 104.7 Hz. At temperatures higher than Tg , να is higher than 10−3 Hz and then νβ is
located outside the experimental frequency window. Thus JG relaxation is usually observed at
temperatures significantly below Tg . Data that allow one to observe resolved JG relaxation at
temperatures above Tg are rare. However, the latter if observed are challenging to test against
the prediction of equation (8) for temperatures above Tg, as we consider next.

4.1. Glass-formers with resolved JG relaxation at temperatures above Tg

Only true JG relaxations are of interest to us to identify with the independent relaxation of
the CM. Secondary relaxations originating from some decoupled internal degrees of freedom
of the molecule are not JG relaxations. For various reasons that can be inferred from the
chemical structures of the glass-formers or from the properties of the secondary relaxations
themselves such as pressure dependence, the examples displayed in figures 6(a)–(f) are true
JG relaxations. The sources of the dielectric relaxation data for 1, 4-polybutadiene [2, 46],
sorbitol [6], 5-methyl-2-hexanol [8] and toluene [2] are published works. The data for
xylitol [49] and BMMP (bis-methyl-methoxy-phenyl-cyclohexane) are new [50]. Since the
resolved JG relaxation contributes to the dielectric loss on the high-frequency side of the
α-relaxation peak, the criterion we use in fitting the KWW function to the α-relaxation peak
is to emphasize good agreement with the data mainly at lower frequencies. Typical KWW fits
to the loss data by ε′′

n from the one-sided Fourier transform,

ε′′
n = 
ε Im

[∫ ∞

0
dt exp(−i2πνt)(−d exp[−(t/τK )1−n/dt)

]
(10)

are shown by either the solid or dashed curves in figures 6(a)–(f). Some of these fits were
carried out after removal of the small contribution to the loss at low frequencies from the dc
conductivity, ε′′

dc, ∝ ν−1, but not shown in figures for the sake of clarity. From the fits to
the isothermal data, we obtain νK and the coupling parameter n. For each glass-former, the
selected data at temperatures not much above Tg were well fitted by a constant n, which is
0.56 ± 0.02 for 1, 4-polybutadiene (PBD), 0.52 ± 0.03 for sorbitol, 0.46 ± 0.02 for 5-methyl-
2-hexanol, 0.46 ± 0.02 for xylitol, 0.44 ± 0.02 for toluene and 0.40 ± 0.02 for BMMPC,
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Figure 6. Isothermal dielectric loss data of six glass-formers that show resolved JG relaxation in the
supercooled liquid state above Tg . Representative KWW fits to the α-relaxation peak are shown as
curves. The value of n so determined is given in the figures. Each vertical arrow pointing towards
certain data taken at a certain temperature indicates the location of the independent relaxation
frequency, ν0, calculated for that temperature. (a) 1, 4-polybutadiene data from [46] (�, ◦, � at
T = −97.5, −95, −92.5 ◦C respectively) and [2] ( at −91.15 K). (b) Sorbitol data taken
from [6] at 264, 266, 268, 276, 287, 296 and 312 K, from left to right. (c) 5-methyl-2-hexanol at
T = 158.2 K from [8]. (d) Xylitol from [49] at 243, 248, 250, 252 and 254 K, from left to right. (e)
Toluene from [2] at T = 121 K. (f) BMMPC from unpublished data [50] at several temperatures
above Tg .
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and they do not seem to depend on temperature when the α-relaxation peak frequencies fall
below 102 Hz.

With n known, we can now calculate ν0 by equation (9) at each temperature for the glass-
formers, with the assumption that they all have the same νc = 1011 Hz, corresponding to
tc ≈ 2 ps [31]. The location of each calculated ν0 is indicated in the figures by a vertical
arrow pointing at the data for which it applies, and it is also the location of the expected β-
relaxation peak frequency, νβ , if the identification between them can be made. The data in
figures 6(a)–(f) show there are good correspondences between the calculated ν0 and νβ , and
support the proposed close relation between the JG relaxation and the independent relaxation of
the CM. The dielectric loss contributed by the independent relaxation in supercooled liquids is
a peak (i.e. the JG relaxation peak) because decay of polarization from the dipole moment
of the molecules is measured. On the other hand, in ionic conductors the independent
relaxation contributes a monotonic increase of ε′′(ν) with decreasing ν because the mean
square displacement of ions is also a monotonic increasing function of time.

The spectral region in between ν0 and νx2 (below which the data is well fitted by the
KWW function) is only part of the intermediate regime, νx1 > ν > νx2, of the extended
CM. As explained before, various practical limitations of the experimental frequency window
preempt the observation of both the NCL in the regime ν > νx1 and the JG relaxation at
lower frequencies at temperatures above Tg. The spectra in figures 6(a)–(f) bear witness to this
statement. Only at temperatures considerably below Tg , where even ν0 or νβ is moved amply
outside the experimental frequency window, will one have the opportunity of seeing the NCL
regime. This is demonstrated for xylitol in figure 6(d), where the data at the bottom taken
below Tg at −173 K show an approximate ν−0.11 dependence over many decades. This weak
frequency-dependent ε′′(ν) could be considered as the high-frequency flank of an extremely
broad β-relaxation peak of unknown origin. In the extended CM this is the NCL.

4.2. Glass-formers without resolved JG relaxation at temperatures above Tg

By inspection of figures 6(a)–(f), at constant να or νK , one can see the separation between να

and ν0 (or νβ) is smaller in glass-formers with decreasing n. Among the six glass-formers in
the figures, BMMPC has the smallest n = 0.40; the JG relaxation is closest to the α-relaxation
and is barely resolved at temperatures above Tg. If the trend continues as expected from
equation (9), glass-formers with smaller n will have the JG relaxation even closer to the
α-relaxation such that they cannot be resolved. However, this encroachment of the JG
relaxation towards the α-relaxation in glass-formers with smaller n opens up some spectral
range for the observation of the NCL at temperatures near Tg. We explore this opportunity by
examining dielectric relaxation data of some examples of such glass-formers.

Threitol [49] has n = 0.36, smaller than the coupling parameter of any of the glass-
formers in figures 6(a)–(f), as shown by a representative KWW fit of ε′′

n to the isothermal data
in the inset of figure 7. The vertical arrows indicate the locations of ν0 calculated for four
temperatures, 232, 228, 226 and 224 K. Only at the two lowest temperatures 224 and 220 K
near and slightly below Tg can the JG relaxation be barely resolved. The KWW exponent of
the α-relaxation does not change with temperature near Tg. Thus by shifting the data at 232,
228 and 226 K horizontally to overlap the data at T = 224 K, an approximate master curve
over nearly 12 decades is obtained for equilibrium liquid threitol and is shown in the main
figure 7. Again the arrows indicate the locations of ν0 calculated. The straight line with slope
−0.13 is drawn merely to indicate the slow decrease of ε′′(ν) with frequency.

On further decreasing n to 0.29 we have the case of glycerol. The isothermal data taken
at T = 179, 185 and 190 K and shown in the inset of figure 8 were all obtained for glycerol
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Figure 7. The inset shows the dielectric loss of threitol [49] at 220, 224, 226, 228 and 232 K,
from left to right. The dashed curves are KWW fits to the α-relaxation peaks with n = 0.36. Each
vertical arrow pointing towards certain data taken at some temperature indicates the location of
the independent relaxation frequency, ν0, calculated for that temperature. In the main figure the
master curve obtained for T = 224 K (•) is shown (see text). The straight line with slope −0.13
is drawn to indicate the slow variation of ε′′ at high frequencies.
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Figure 8. The inset shows the dielectric loss data of glycerol from [3] at three temperatures: 179 K,•; 185 K, �, and 190 K, �. The data at 179 K were obtained after ageing to achieve thermodynamic
equilibrium. The curve is fitted to the α-relaxation peak by the one-sided Fourier transform of the
Kohlrausch function with n = 0.29. Each vertical arrow pointing towards certain data taken at
some temperature indicates the location of the independent relaxation frequency, ν0, calculated for
that temperature. The main figure shows the master curve obtained by shifting the data at the two
higher temperatures to superpose on the data at the lowest temperature 179 K (•). The vertical
arrow indicates the location of the independent relaxation frequency, ν0, calculated. The dashed
line with frequency dependence, ν−0.1, indicates the slow variation of ε′′ at high frequencies or the
NCL regime.
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Figure 9. The inset shows the dielectric loss data of propylene carbonate from [3] at three
temperatures: 152 K, ◦; 155 K, �, and 158 K, �. The data at 152 K were obtained after
ageing to achieve thermodynamic equilibrium. The curve is fitted to the α-relaxation peak by
the one-sided Fourier transform of the Kohlrausch function with n = 0.27. Each vertical arrow
pointing towards certain data taken at some temperature indicates the location of the independent
relaxation frequency, ν0, calculated for that temperature. The main figure shows the master curve
obtained by shifting the data at the two higher temperatures to superpose on the data at the lowest
temperature 152 K (◦). The vertical arrow indicates the location of the independent relaxation
frequency,ν0 , calculated. The dashed line with frequency dependence, ν−0.08, indicates the slow
variation of ε′′ at high frequencies or the NCL regime.

in the equilibrium liquid state by Schneider et al [3, 9]. At the lowest temperature of 179 K,
equilibrium is achieved by ageing over several days, and the data exhibit an inflexion at the
high-frequency wing, which indicates the presence of a JG relaxation [3]. The locations of
the calculated ν0 are indicated by the vertical arrows. The KWW exponent of the α-relaxation
determined from the fits does not change with temperature near Tg. Thus by shifting the curves
in the inset taken at T = 185 and 190 K horizontally to overlap the data at T = 179 K, an
approximate master curve over nearly 14 decades is obtained for an equilibrium liquid glycerol
and is shown in the main figure. From να = 10−5.7 Hz and n = 0.29 of the master curve,
the expected β-relaxation peak frequency, ν0, is calculated by equation (5) and its position is
indicated by the lone vertical arrow. The decrease of ε′′(ν) with frequency is very slow at high
frequencies, approximately described by ν−0.1, as illustrated by the dashed line in the figure.

On further decreasing n, we have examples from propylene carbonate (PC), n = 0.27,
and N-methyl-ε-caplolactam (NMEC), n = 0.24. In exactly the same manner as we did for
glycerol, the isothermal data of PC [3] and NMEC [51] taken at equilibrium (insets in figures 9
and 10) are shifted to form master curves (figures 9 and 10). The PC data at the lowest
temperature of 152 K were obtained [3] after ageing for days to achieve thermodynamic
equilibrium.

The results of PC and NMEC in figures 9 and 10 all show similar frequency dispersion to
glycerol, even though they have widely different molecular structures and are van der Waals
liquids without hydrogen bonding. They all have NCL at high frequencies not much different
from the approximate ν−0.1-dependence of glycerol. When temperature falls substantially
below Tg, νK becomes so low that the entire α-relaxation peak, as well as ν0, moves out of
the experimental frequency window, and the NCL becomes the only observed feature in the
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Figure 10. The inset shows the dielectric loss data of N-methyl-ε-caplolactam (NMEC) from [51]
at several temperatures: 178 K, ; 176 K, ♦; 174 K, �; 170 K, �, and 168 K, •. The curve is
fitted to the α-relaxation peak by the one-sided Fourier transform of the Kohlrausch function with
n = 0.25. Each vertical arrow pointing towards certain data taken at some temperature indicates
the location of the independent relaxation frequency, ν0, calculated for that temperature. The main
figure shows the master curve obtained by shifting the data at the other temperatures to superpose
onto the data at 170 K (�).The vertical arrow indicates the location of the independent relaxation
frequency, ν0, calculated. The dashed line with frequency dependence, ν−0.09, indicates the slow
variation of ε′′ at high frequencies or the NCL regime.

dispersion as found experimentally [2, 52]. All these other glass-formers share the common
characteristics of having smaller values of n, just like glycerol. Actually among these, glycerol
has the largest n. The ratio of the NCL to the maximum loss of the α-peak seems to be about
the same for two glass-formers having the same α-peak frequency νK .

Such a slow decrease of ε′′(ν) with frequency of the NCL resembles the NCL found at
high frequencies in glassy and molten ionic conductors discussed in section 2. The entire
ε′′(ν) dispersion of glycerol PC and NMEC shown in figures 8–10 bears some analogy to
the ionic conductors. At high frequencies there is the NCL regime, defined by ν > νx1,
with the upper bound νx satisfying the condition ν0 � νx1. Then comes the intermediate-
frequency regime, νx1 > ν > νx2, where ε′′(ν) broadly crosses over from the NCL to a
power law ν−n at lower frequencies. Here n is the exponent in equation (1) for the KWW
function that fits the data for ν < νx2. The upper bound of the intermediate-frequency regime
or equivalently the lower bound of the KWW regime, νx2, satisfies the condition νx2 � ν0.
The only difference in ε′′(ν) between ionic conductors and dipolar supercooled liquids is at
low frequencies. Ionic conductors have the ν−1-dependence corresponding to dc conductivity
of the mobile ions, while non-conducting dipolar liquids exhibit the α-loss peak. In glassy
ionic conductors at sufficiently low temperatures when the cooperative ion hopping relaxation
frequency νK as well as ν0 becomes very low, the NCL is the only observed feature in the
experimental frequency window [22], just like glycerol deep in the glassy state [2, 52]. These
general properties found in ionic conductors have led to an interpretation of evolution of the
dynamics of the ions from short times when they are caged to the long times when they are all
engaged in slowed cooperative hopping motion [53, 54]. In the following subsection we shall
give a similar interpretation to the molecular dynamics of glass-forming liquids.



S1122 K L Ngai

4.3. Interpretation of the evolution of the molecular dynamics in supercooled liquids

A common practice in analysing dielectric loss data is to best fit the ε′′(ν) to a superposition
of the Fourier transform of the KWW function equation (10) (or a Cole–Davidson function)
for the α-relaxation and a symmetric Cole–Cole function for the β-relaxation. The dispersion
of the β-relaxation obtained from the fit is very broad at temperature near or below Tg . An
example for glycerol at 185 and 179 K can be found in figure 1 of [9] and for PC at 152 and
155 K in figure 2 of the same reference, where such fits yield extremely broad distributions
of β-relaxation frequencies. Although the existence of the β-relaxation in glycerol and PC is
not in doubt because of the evidence provided by ageing [3, 9] and by the different response to
pressure of the peak and the excess wing [55], it is not easy to understand why such extremely
broad distributions of β-relaxation frequencies extending even below the most probable
α-relaxation frequency, νK , can exist in an equilibrium liquid. In the following we shall
give an alternative analysis and interpretation to the data in the equilibrium liquid state.

We start with the ‘master’ spectra of glass-formers shown in the main parts of figures 8–10.
The crux of the interpretation is the independent relaxation frequency, ν0, we have calculated
by equation (9) from the parameters, νK and n, of the α-peak obtained in fitting it to the
KWW function. In all cases, ν0 is located between the KWW α-peak and the NCL regime at
high frequencies. Specifically ν0 is about two decades higher than the frequency, νx2, below
which the Fourier transform of the KWW function accurately describes the α-peak. Also ν0

is about two decades lower than the frequency, νx1, above which the NCL regime takes hold.
The interval, νx2 < ν < νx1, is appropriately called the transition zone separating the NCL
regime (νx1 < ν) from the KWW regime (ν < νx2). Since ν0 is the independent relaxation
or reorientation time of a molecule, the fact that ν0 � νx1 implies the probability of such
independent reorientations, given by [1 − exp(−t/τ0)] = [1 − exp(−ν0/ν)], is small when
ν > νx1. Hence few independent reorientations occur in the NCL regime and this explains the
low dielectric loss and the very slow increase with frequency of ε′′ in the NCL regime (see
figures 8–10). Thus in the NCL regime, most molecules are still ‘caged’, meaning that they
have not made the independent reorientation to get themselves out of the cages. The small NCL
in this caged period is nevertheless contributed to by the independent reorientations of a few. As
frequency is decreased (or time is increased), the probability of such independent reorientations
monotonically increases and there will be a time (frequencyνx1) beyond which the dependence
of ε′′ no longer fits into the definition of NCL (i.e., say 10% deviation from the approximate
power law ν−α). The deviation of ε′′ from the NCL increases on further decrease of frequency
below νx1, because of the monotonically increasing probability of independent reorientations.
When the frequency is comparable to ν0, the probability of independent reorientations becomes
significant, giving rise to the JG peak at frequency νβ ≈ ν0. At frequencies further below
ν0, many more molecules are now attempting to make independent orientations, but not all
of them are successful because of the omnipresent interaction/coupling between molecules.
Some degree of cooperativity has to be involved, where cooperativity is used here in the
sense that attempts of some molecules to reorient are unsuccessful in order to make possible
successful attempts of other molecules. Thus cooperativity entails dynamic heterogeneity.
The degree of cooperativity increases with decreasing frequency because of the increasing
number of molecules making such attempts. When ν falls sufficiently below ν0, all molecules
have practically a 100% probability of attempting independent reorientations, and the regime
of fully cooperative dynamics with the KWW correlation function is reached and prevails
thereafter. This scenario, that none of the molecules (or basic units in the more general context
of the CM) is caged and all are ready to execute the independent relaxations but are preempted
by interactions/coupling, is assumed to be the case in all previous theoretical considerations
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[30–34] and applications of the CM to the α-relaxation (or whichever ultimate relaxation
process of the basic units in other systems). In other words, no consideration has been given
to the earlier stages of the dynamics when essentially most of the molecules are still caged
(i.e., the NCL regime) and the gradual development of cooperativity when increasing numbers
of molecules are ready to reorient independently (i.e., the transition zone). Here, for the first
time, we include the dynamics of earlier times and a more complete description of the CM
results. From the original CM [30–33] the fully cooperative dynamics corresponds to ε∗ being
well described by the Fourier transform of the KWW function. Thus νx2 as defined earlier is
the frequency for onset of fully cooperative dynamics. The slowing down of the independent
reorientations in the fully cooperative dynamics is caused by the interaction/coupling between
the molecules, starting out from a temperature-independent time, tc. Equation (2) (or the
equivalent equations (6) and (9)) is a consequence of such onset, and has been instrumental
in locating the independent reorientation frequency, ν0, from the parameters, n and τα , of the
KWW fit to the α-relaxation. The above description of the evolution of the molecular dynamics
of glass-formers supported by experimental data would not be credible unless the independent
reorientation frequency were given quantitatively and its location were consistent with the
interpretation. The CM enables ν0 to be calculated and its location is consistent with the JG
peak frequency νβ , and the interpretation of the origins of the NCL and the transition zone
(figures 6–10). The broad width of the JG relaxation is accounted for by the broad transition
from the NCL to the fully cooperative KWW relaxation. The relaxation strength of the JG
relaxation can be inferred from that of the independent relaxation. The only difference between
the independent relaxation and the α-relaxation is the slowing down of its relaxation time from
τ0 to τα or τK due to intermolecular coupling (equation (6)). Other than this difference, the
independent relaxation has the same dependence on specific volume or configurational entropy
as the α-relaxation. Hence, from our identification of the JG relaxation with the independent
relaxation, the temperature dependence of the dielectric strength of the JG relaxation will
reflect that of the structural relaxation across Tg , as observed [56, 57].

The description we give here for the evolution of the molecular dynamics as a function of
time/frequency for supercooled liquids is analogous to that given earlier for the ion dynamics
in ionic conductors. This similarity is supported by the experimental data presented and
is in accord with the view of the CM that some fundamental physics govern the relaxation
dynamics of interacting systems, giving rise to generic properties. This view has support
from the observation by dynamic light scattering of the NCL in polyisobutylene, a polymeric
glass-former, and other substances [58, 59]. We have pointed out elsewhere [53] that data
from the time domain confocal microscopy of colloidal supercooled liquids [26, 27] also
exhibit the three regimes of NCL, the transition zone and the fully cooperative regime. From
molecular dynamics simulation data of ion dynamics in a glassy ionic conductor [53] we
have demonstrated that the temporal development of the self-part of the van Hove function
supports the interpretation given here. The time dependence of the non-Gaussian parameter
calculated from the molecular dynamics data of the glassy ionic conductor strongly resembles
that of the supercooled colloidal particles [26, 27] and binary Lennard-Jones liquids from
simulation [60]. All these facts provide additional evidence for a common description of the
relaxation dynamics of cooperatively relaxing systems and support for the interpretation based
on the extended CM given here.

5. Conclusion

From analyses of experimental data by using the concept of independent relaxation of the CM
and its relaxation time that can be obtained quantitatively,we have arrived at a description of the
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evolution with time of the ion dynamics in glassy or molten ionic conductors and molecular
reorientation relaxation in supercooled liquids. The evolution can be roughly divided into
three principal time/frequency regimes: the NCL at high frequencies, a transition zone at
intermediate frequencies and the fully cooperative ion hopping or molecular reorientation
regime at low frequencies. It is remarkable that a common description of the dynamics
is shared by two different cooperatively relaxing systems: ion hopping dynamics in ionic
conductors involving translations of ‘point’ charged particles, and dynamics in supercooled
liquids involving reorientation of densely packed molecules. The crux of the extended CM
interpretation is the calculated independent relaxation time/frequency. Its position within
the transition zone enables the physical interpretation of the NCL, and its interpretation as
being the precursor of the cooperative structural α-relaxation. From dielectric spectra of the
supercooled liquids exhibiting resolved JG relaxation, we find that the most probable JG β-
relaxation frequency is nearly the same as this calculated independent relaxation frequency.
Hence the JG β-relaxation, commonly considered to be a universal feature of glass-formers,
provides evidence of the same for the independent relaxation in the extended CM.

Acknowledgments

This work was supported by the Office of Naval Research. I thank the following colleagues
for generously providing experimental data: A Kulkarni for 0.80LiF–0.20Al(PO3)3,
P Lunkenheimer and A Loidl for glycerol and propylene carbonate, R Nozaki for sorbitol,
M Paluch for BMMPC and R Richert for NMEC. I also thank R Casalini, J Habasaki, C León,
P Lunkenheimer and M Paluch for collaborations, and C M Roland for a critical reading of
the manuscript.

References

[1] Wagner H and Richert R 1998 J. Non-Cryst. Solids 242 19
[2] Wiedersich J, Blochowicz T, Benkhof S, Kudlik A, Surovtsev N V, Tschirwitz C, Novikov V N and Rössler E
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[11] Döß A, Paluch M, Sillescu H and Hinze G 2002 Phys. Rev. Lett. 88 95701
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